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tion of fully reduced deazaFAD bound to D-amino acid oxi­
dase.6 Although the mechanism of the oxygen dependent 
reoxidation of reduced flavins is not fully understood,8 it 
has been suggested that this reaction proceeds via the inter­
mediate formation of the flavin semiquinone.8a Thus, the 
lack of oxygen reactivity of reduced deazaflavins6 might be 
attributed to a slow oxidation of fully reduced deazaflavin 
to the deazaflavin semiquinone. 

The results of this study further support the use of dea­
zaflavins as models for elucidating the mechanism of action 
of flavoproteins, since it has now been demonstrated that 
like normal flavins, deazaflavins can exist in three chemical 
states, oxidized, reduced, and semiquinone. The importance 
of flavin semiquinones as intermediates in flavoprotein re­
actions is still a controversial issue.4 The present results 
serve to illustrate that deazaflavin semiquinones are also 
potential intermediates in deazaflavoprotein catalyzed reac­
tions. 
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Benzo[c]selenophene. A Base-Catalyzed 
Selenoxide Dehydration 

Sir: 

The highly reactive o-quinonoid heterocycles benzo[c]fu-
ran' and benzo[c]thiophene2 have been the objects of con­
siderable chemical interest, both from the synthetic and the 
theoretical points of view. The selenium analogue of these 
compounds, benzo[c]selenophene (1), has hitherto re­
mained unknown, even in the form of substitution products. 
We now describe the first synthesis of the unstable benzo-
[c]selenophene (1), as well as the first instance of a base-
catalyzed dehydration of a selenoxide. 

Dibenzyl selenoxide (9) is readily prepared in high yield 
either by the hydrogen peroxide oxidation of dibenzyl sele-
nide (8)3 or by treatment of dibromide 10 with aqueous al­
kali.4 By contrast, oxidation of 2-selenaindane (4) has yield­
ed only an anomalous product5 now recognized as 2,2'-di-
formyldibenzyl diselenide (6),6 whereas treatment of the 
corresponding dibromide 5 with alkali was stated to effect 
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debromination to the original selenide 4.5 Since the reduc­
tive debromination of a selenide dibromide by base has no 
precedent, we reexamined this reaction with the following 
results. 

Dibromide 5 was destroyed within a few minutes when 
rubbed with cold aqueous 15% NaOH. When the resulting 
milky emulsion was stirred at 0 0 C with hexane, benzo­
ic] selenophene (1) was slowly liberated and extracted into 
the organic phase. Heterocycle 1, which has a pronounced 
naphthalene-like odor, polymerized upon attempted isola­
tion in the pure state but was found to be fairly stable as a 
dilute hexane solution. Its ultraviolet absorption spectrum is 
very similar to that of benzo[c]thiophene,7 compared to 
which it shows a small (ca. 7 nm) bathochromic shift: Xmax 

(hexane) 273, 286, 291, 298, 302 sh, 305 sh, 312, 323, 328, 
336 sh, 340, 344 sh, 353, 357, 362 sh nm. The rate of for­
mation of 1, as monitored by uv, increases with alkali con­
centration, and the reaction is best carried out using cold 
40% NaOH for 2 h. 

Benzo[c]selenophene (1) reacts rapidly with tetracyano-
ethylene in benzene (32% based on dibromide 5) to give the 
highly crystalline adduct 2, mp 220 0 C dec.8 The mass 
spectrum of this adduct is in full acoord with the assigned 
structure, showing major peaks at m/e 310 (M, 8%), 230 
(M - Se, 7%), 128 (TCNE, 66%), 182 (M - TCNE, 99%), 
and 102 (M - TCNE - Se, 100%). 

The N M R spectrum of 1 in CDCU showed the following 
peaks: 5 8.40 (s, 2 H, H, and H3), 7.33-7.54 (m, AA' part 
of AA'BB', 2 H, H 4 and H7), and 6.77-7.02 (m, BB' part of 
AA'BB', 2 H, H5 and H6) .9 These peaks vanished immedi­
ately upon addition of TCNE, and adduct 2 crystallized 
from the solution. 

Since the generation of selenophene 1 from dibromide 5 
can be rationalized without requiring the intermediacy of 
selenoxide 3, we examined the oxidation of selenide 4 with 1 
equiv of neutral H2O2 in cold methanol. Immediate dilution 
of the reaction mixture with water and CCI4 extraction 
yielded only traces of starting material from the organic 
phase. The aqueous phase contained selenoxide 3, since ad­
dition of HBr caused the immediate precipitation of dibro­
mide 5 (50% pure material after ether washing). A similar-
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Iy prepared neutral solution of selenoxide 3 liberated selen-
ophene 1 very slowly into hexane until 40% NaOH was 
added, when rapid liberation of 1 occurred. Dehydration of 
the selenoxide hydrate, via the ylide 7, would appear to be a 
likely mechanism for this unprecedented reaction. 
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Evidence for the Dimerization of Dimethylsilylene 
to Tetramethyldisilene 

Sir: 

In studying the mechanisms of silylene reactions we have 
uncovered evidence for the gas-phase dimerization of di­
methylsilylene to tetramethyldisilene. 

2(CHj)2Si — (CH 3) 2Si=Si(CH 3)2 

Since these observations point to a new reaction of sil­
ylene and to a new route to sila-olefins, they seem worth re­
porting. 

The pyrolysis of disilane and its derivatives is a well-es­
tablished method for the generation of divalent silicon 
species, silylenes.' 

RR'R"Si—SiRR'R" -* RR'Si + SiRR'R"2 

When l,2-dimethoxy-l,l,2,2-tetramethyldisilane is 
subjected to gas-phase pyrolysis at low pressure (<100 n) in 
a flow system at 600 0 C , dissociation to dimethylsilylene is 
indicated by a quantitative yield of dimethoxydimethylsil-
ane and a 14% yield of the product of attack of dimethylsil­
ylene on its parent disilane,2 l,3-dimethoxy-l,l,2,2,3,3-
hexamethyltrisilane. 
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In addition, however, three disilacyclobutanes are ob­
tained in combined yield of 28%, the two formed in greatest 
yield having previously been characterized as the major sta­
ble products resulting from the rearrangement of tetra­
methyldisilene.3 
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The formation of the same major products from pyrolysis 
of dimethoxytetramethyldisilane and from tetramethyldisil-
abicyclooctadienes suggests that tetramethyldisilene may 
be a common intermediate in the two systems and is formed 
by dimerization of dimethylsilylene in the former case. 

In this communication we wish to summarize briefly our 
evidence for the formation of disilacyclobutane products, 
present data consistent with the formation of these products 

Table I. Product Yields from Pyrolysis of (CHj)2Si-Si(CHj)2" 
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0AIl pyrolyses employed a seasoned hot zone consisting of a 10 mm i.d. X 12 cm quartz tube. The temperatures are measured at the outer 

surface of the tube. Products are condensed at 77 K within 2 cm of the hot zone. The disilane vapor flowed into the hot zone at a rate of ca. 
200 mg/h, and a total of 200 or 400 mg was pyrolyzed in each experiment. * All yields were determined relative to the (CH3)2Si(OCH3)2 

product. cWhen propyne was present no trisilane product was detected. 
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